Volume 6, Issue 3, May 2018, Page: 82-89
Assessment of the Content of β-Carotene, Lycopene and Total Phenolic of 45 Varieties of Tomatoes (Solanum lycopersicum L.)
Edwige Bahanla Oboulbiga, Food Technology Department, Institute of Research in Applied Sciences and Technologies, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso; Center for Research in Biological, Food and Nutritional Sciences, Ouaga 1 Pr Joseph KI-ZERBO University, Ouagadougou, Burkina Faso
Cheick Omar Traore, Market gardening Program, Fruit and Tubers Trees, Plant Production Department, Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
Windpouire Vianney Tarpaga, Market gardening Program, Fruit and Tubers Trees, Plant Production Department, Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
Charles Parkouda, Food Technology Department, Institute of Research in Applied Sciences and Technologies, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso
Hagretou Sawadogo-Lingani, Food Technology Department, Institute of Research in Applied Sciences and Technologies, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso
Christine Kere-Kando, Food Technology Department, Institute of Research in Applied Sciences and Technologies, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso
Alfred Sabedenedjo Traore, Center for Research in Biological, Food and Nutritional Sciences, Ouaga 1 Pr Joseph KI-ZERBO University, Ouagadougou, Burkina Faso
Received: Jun. 25, 2018;       Accepted: Jul. 12, 2018;       Published: Aug. 8, 2018
DOI: 10.11648/j.jfns.20180603.13      View  479      Downloads  31
Abstract
Tomato is a highly consumed food in the world because of its richness in nutrients especially carotenoids, vitamins and total phenolic. It has been proven very beneficial for the body. This study aimed to evaluate the composition of β-carotene, lycopene and total phenolic of 45 tomatoes varieties from experimental station in Burkina Faso. The content of β-carotene and lycopene was determined by HPLC while the total phenolic contents were analyzed by spectrophotometry. The lycopene content and the β-carotene content of the 45 varieties ranged from 2.41 ± 0.00 (variety 27T4) to 83.51 ± 0.22 (BT1 variety) mg /100 g of dry matter and 0.83 ± 0.00 (variety 27T4) to 26.80 ± 0.08 (Variety BT1) mg / 100 g of dry matter respectively. The total phenolic contents were between 502.84 ± 47.46 (variety 4T1) to 1181.08 ± 182. 97 (variety 25T2) mg GAG /100 g of dry matter. The 45 varieties of tomato analyzed are potential sources of lycopene, β-carotene and total phenolic. Some of the varieties can be promoted for cultivation at national level due to their high content in these three elements.
Keywords
Tomato, β –Carotene, Lycopene, Total Phenolic
To cite this article
Edwige Bahanla Oboulbiga, Cheick Omar Traore, Windpouire Vianney Tarpaga, Charles Parkouda, Hagretou Sawadogo-Lingani, Christine Kere-Kando, Alfred Sabedenedjo Traore, Assessment of the Content of β-Carotene, Lycopene and Total Phenolic of 45 Varieties of Tomatoes (Solanum lycopersicum L.), Journal of Food and Nutrition Sciences. Vol. 6, No. 3, 2018, pp. 82-89. doi: 10.11648/j.jfns.20180603.13
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Abushita A. A., Daood H. G Biacs P. A. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, 48, 2075-2081.
[2]
Davies J. N. and Hobson G. E, 1981. The constituents of tomato fruit-The influence of environment, nutrition, and genotype. CRC Critical Reviews in Food Science and Nutrition, 15, 205–280.
[3]
Diessana A. (2015). Optimisation de l’extraction aqueuse des anthocyanes d’Hibiscus sabdariffa l. Mémoire de fin d'étude, Université de Ouagadougou, Burkina Faso. 55 p.
[4]
Dorais M., Gosselin A., Papadopoulos A. P. (2001). Greenhouse tomato fruit quality. Hortic, 26, 239-306.
[5]
Dumas Y., Dadomo M., Lucca G. D., Grolier P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83(5), 369-382.
[6]
Etminan M., Takkouche B., Caamano-Isorna F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev, 13(3):340-5.
[7]
Georgé S., Tourniaire F., Gautier H., Goupy P., Rock E., Caris-Veyrat C. ( 2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124: 1603-1611.
[8]
Giovanelli G., Lavelli V., Peri C., Nobili S. (1999). Variation in antioxidant compounds of tomato during vine and post-harvest ripening. Journal of the Science of Food and Agriculture, 79, 1583-1588.
[9]
Hernández Suárez M., Rodríguez Rodríguez E. M, Díaz Romero C. (2008). Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chemistry, 106(3), 1046–1056.
[10]
Lenucci M. S., Cadinu D., Taurino M., Piro G., Dalessandro G. (2004). Investigation of the antioxidant properties of tomatoes after processing. Journal of Food Composition and Analysis, 635-647.
[11]
OMS (2003). Régime alimentaire, nutrition et prévention des maladies chroniques. Série de rapports techniques, Genève, 142 p.
[12]
OMS (2014). Fruits et legumes pour la santé. Rapport de l’atelier commun FAO/OMS.
[13]
Parr A. J., Bolwell G. P. (2000). Phenols in the Plant and in Man. The Potential for Possible Nutritional Enhancement of the Diet by Modifying the Phenols Content or Profile. Journal of the Science of Food and Agriculture, 80, 985-1012.
[14]
Rao A. V, Agarwal S. (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases. Nutrition Research, 19(2), 305-323.
[15]
Rao A. V., Agarwal S. (2000). Tomato lycopene and its role in human health and chronic diseases. Can Med Am J, 163-739.
[16]
Rao L. G., Guns E Rao A. V. (2003). Lycopene: Its role in human health and disease. AGRO Food Industry Hi-Tech, 25-30.
[17]
Rao L. G. (2005). Les tomates préviennent-elles l’ostéoporose. In Endocrinologie, Vol. 5, p. 6). TORONTO.
[18]
Rotino G. L., Acciarri N., Sabatini E., Mennella G., Lo Scalzo R., Maestrelli A., Molesini B., Pandolfini T., Scalzo J., Mezzetti B., Spena A. (2005). Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol, 5: 32.
[19]
Rouamba A., Belem J., Tarpaga WV, Otoidobiga L., Ouedraogo L., Konate YA, Kambou G. (2013). Itinéraires techniques de production des tomates d’hivernage FBT., INERA Farako-Bâ, 4p.
[20]
Sahlin E., Savagea G. P, Lister C. E. (2004). Investigation of the antioxidant properties of tomatoes after processing. Journal of Food Composition and Analysis, 17: 635-647.
[21]
Seremé A., Dabiré C., Koala M., Somda K. M, Traoré S. A. (2016). Influence of organic and mineral fertilizers on the antioxidants and total phenolic compounds levels in tomato (Solanum lycopersicum) var. Mongal F1. Jounal of Experimental Biology and Agricultural Sciences, 4(4), 414-420.
[22]
Sesso H. D., Liu S., Gaziano J. M., Buring J. E. (2003). Dietary lycopene, tomato-based food products and cardiovascular disease in women. J Nutr Jul, 133(7): 2336-41.
[23]
Singleton V. L., Orthofer R and Lamuela-Raventos R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299, 152-178.
[24]
Somé I. T., Zagré M. N., Kafando P. E., Bendech M. A., Baker S. K., Deslile H. and Guissou P. I. (2004). Validation d’une méthode de dosage des caroténoïdes par CLHP: application à la détermination de teneur en caroténoïdes dans dix variétés de patates douces (Ipomea batata). C. R. Chimie, 7: 1063-1071.
[25]
Thompson K. A., Marshall M. R., Sims C. A., Wei C. I., Sargent S. A., Scott J. W. (2000). Cultivar, maturity and heat treatment on lycopene content in tomatoes. Journal of Food Sciences 65, 791-795.
[26]
Tonucci L. H., Holden J. M., Beecher G. R., Khachik F., Davies C. S., Mulokozi G. (1995). Carotenoid content of thermally processed tomato-based food products. Journal of Agricultural and Food Chemistry, 43, 579-586.
[27]
Toor R. K., Savage G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38(5), 487-494.
[28]
Tudor-Radu M., Vîjan L. E., Tudor-Radu C. M., Tita I., Sima R., Mitrea R. (2016). Assessment of Ascorbic Acid, Polyphenols, Flavonoids, Anthocyanins and Carotenoids Content in Tomato Fruits. Not Bot Horti Agrobo, 44(2):477-483.
Browse journals by subject